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The effects of ma or removal at“the surface of a rotating disk on
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heat transfer and on the flow field about the disk are studied. Consideration is

Ves

given to gaseous systems which are composed of either one or two component gases.

@ Solutions of the equations which govern the hydrodynamics, energy transfer, and mass
KJ i diffusion have been obtained over the entire range from large suction velocities to
large blowing velocities. Results are given for the velocity, temperature, and mass
fraction distributions, as well as for the heat transfer, mass transfer, and torque
™ requirements. The effects of the mass transfer are discussed in detall. It is

shown that fluid injection sharply decreases the heat transfer at the surface.
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diffusive velocity components

mass fraction, pi/p

coordinate measuring distance normal to disk surface

thermal diffusivity

thickness of viscous or thermal layers (see subscripts)

dimensionless independent coordinate, (w/v)l/2 A

dimensionless temperature, (T - T_)/(Ty, - Tw)
absolute viscosity

kinematic viscosity

density

shear stress components at the disk surface

dimensionless mass fraction, (W; - Wy )/(Wy, - Wy )

angular coordinate

angular velocity

component 1, diffusing gas

component 2, main stream gas

ambient conditions (z = «)

convective

diffusive

displacement

refers to entering temperature of coolant
momenbum

thermal

conditions at surface (z = 0)
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INTRODUCTION

The pioneering study of fluid flows in which there is mass addition or mass re-
moval at a bounding surface was carried out by Prandtl in 1904. His attention was
directed toward control of the boundary layer on aserodynamic bodies, an end which
can be achieved by sucking fluid away through slots in the surface. Investigation
of the problem of boundary-layer suction has continued up to the present. Results
of these suction studies may also be applied when the mass removal comes about due
to freezing (i.e., icing) at the surface.

In recent years, considerable interest has also been shown in mass addition to
boundary layer flows, especially in connection with the cooling of turbine blades
and the skins of high speed aero-vehicles. Such a cooling process, frequently
termed transpiration, might utilize a porous surface through which a cooclant, either
a gas or liquid, is forced. In the case of a liquid coolant, evaporation would take
place due to the hot boundary layer gases, and the latent heat of vaporization would
thus e utilized. 1In an alternate technique of transpiration cooling, the surface
of the vehicle would be fabricated of a material which would evaporate and hence
cool the boundary layer.

From this discussion, it is clear that an attack on the problem of fluid injec-
tion or removal involves consideration of the flow velocities, the heat transfer,
and the mass transfer. For boundary layer flows, a fundamental study of this type
has been made by Hartnett and Eckert (ref. 1). As a logical first step, they ex-
amined the laminar boundary-layer equations for the case of a two component gas
where the properties of the diffusing gas were identical to those of the free-stream
fluid. The results of such an analysis can be applied to two-component systems in
which the properties of the separate components are not too different (and, of
course, to one component systems). But an even greater utility of such an analysis
is that it indicates basic trends and behavior patterns,

In the present investigation, we turn to an altogether different physical con-

figuration. The system to be studied, shown schiematically in figure 1, is a
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rotating disk immersed in a large body of otherwise quiescent fluid. Motions are
induced within the fluid by the rotation of the disk. Mass transfer to or from the
fluid may take place at the surface of the disk, either by direct injection or suc-
tion, or else by phase change. The rate of mass addition or removal is uniform at
all points on the disk surface. Heat transfer may also take place due to a differ-
ence in temperature between the ambient fluid and the surface of the disk. As a
first step, we study this problem by using the same assumptions about fluid proper-
ties as has been mentioned in connection with reference 1. The solutions and re-
sults thus obtained constitute a fundamental body of information which provides in-
sight into behavior patterns and may also be of direct application to single com-
ponent or to two-component gases. Consideration will be given here to the entire
range of mass transfers, extending from large suction through small suction and in-
Jection to large injection.

A modest beginning on this problem has been made by Stuart (ref. 2). He con-
fined his attentions to the effects of suction on the velocity distribution; heat
and mass transfer were not considered. Most of his work was directed to large suc-
tions, with only a single case of moderate suction reported. No consideration was
given to fluid injection.

ANATYSIS

The governing egquations. - The velocity, temperature, and diffusion fields

around a rotating disk are governed by the basic conservation principles: momentum,
energy, and mass; and it is these which form the starting point of our study. The
momentum principle is represented by the three Navier-Stokes equations, one for each
coordinate direction; while energy conservation provides a fourth equation. For a
multi-component gas,conservation of mass must be satisfied by the separate components.
When there are two components, as is the case in the present analysis, mass conserva-
tion is fully expressed by a continuity equation for the mixture and a diffusion

equation for one component.®

¥This will guarantee that mass conservation is satisfled for the second component.
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The mathematical statement of the conservation laws appropriate to a constant

property, non-dissipative flow may be written in cylindrical coordinates as follows:

Momentum conservation av V2 W v
__r.__qz)__a (2 .2 __r)
p(dt r/ 3% e A\Vr 12 OO 72 (1)
av.. V.V oV s
_Qr_fﬁ)__la ( 2 1”__5P_>
p(;t t—=) = - 5 5% + U vsz + % g (2)
av d
pa:—t—z-:—sg-l-uvzvz (3)
Energy conservation
& = aver (4)
Mass conservation
s (M) St =0 ()
dwy
== = DV (6)
where
a o d Vo d
T Vr X tT S * V2 5z
and .
gz % 123 ¥ 1
dr2 T Or 3,2 7 p2 5@2

The symbols V s and V, represent the usual convective velocity components. So,

r’Vm
the first five equations remain the same whether or not the gas diffusing out of (or
into) the wall is the same as the main-stream component. So, within the framework
of the constant property analysis, the velocity and temperature distributions are
independent of the concentration field. Equation (6) is called the diffusion equa-
tion. It governs the distribution of the weight fractlon W;, which is defined as
the ratio of the partial density of component 1 to the total density. A similar
definition applies to Wp. Using the Gibbs-Dalton law, it follows that

Py + Py =p or W +W,=1 )]
In the derivation of equation (6), it has been assumed that the diffusion velocities

are given by Fick's law (ref. 1), e.g.,

(v,)p = - S (vy)g = - %% 5. ete. (8)
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In this analysis, we will assign the subscript 1 to identify the component diffusing
through the wall, while 2 will represent the other component (while would most likely
be air). |

The solution of the partial differential equations (1) through (6) would appear,
at first glance, a too formidable task. Fortunately, we can draw on the experience
of von Karmén (ref. 2), who successfully solved the velocity problem for an imper-
meable disk rotating in a single-component, incompressible fluid. Kérman uséd a
similarity transform to reduce the partial differential equations of his problem to
ordinary differential equations, Which are easier to solve. Utilizing his idea, we
introduce the following new varisbles

(a) new independent variable
1l/2 .
n = Z(%)-) / (98’)

() new dependent varisbles

v Vv v
F(n) = -I;Dr-, G(n) = -n%,- H(n) = '@)_?T]é’ P(q) = -“%
Y (9b)
T - T Wi - Wy,
6 = m—— o(n) = m——
(TI) TW - Too’ (T]) Wlw _ wloo

The similarity aspects of the transformation are linked to the supposition that (ex-

cept for a simple stretching of V. and V) the velocity, temperature and concen-

o)
tration profiles do not change shape at different values of r. Also, the idea of

angular symmetry has been invoked, i.e., 9/dp = O.

Under the transformation, the conservation equations (1) through (6) become

2

F' = HF' + F% - G (1a)
G" = HG' + 2FG (2a)
P' = H" - HH' (3a)
6" = (Pr)H6" (4a)
H' = -2F (5a)
" = (Sc)Ho' (6a)
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where Pr and Sc respectively represent the Prandtl and Schmidt numbers. The

primes denote differentiation with respect to 1. Although the transformation has

provided a set of ordinary differential equations, a closed form solution is still
not within our grasp, and numerical techniques must be used. For computational con-
venience, it is desirable to eliminate F from equations (la), (2a), and (5a),
giving
m 1 ,2 2
H'™ = HE" - (H')%/2 + 2G (10)

G’"

HG' - H'G (11)
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Simultaneous solution of these will yield H and G. Then, with a solution for H
at our disposal, equations (4a) and (6a) may be attacked. If Pr = Sc and if the
boundary conditions coincide, then eguations (4a) and (6a) have identical solutions.
The pressure distribution is somewhat incidental to the problem and no further at-
tention will be given to equation (3a).

Boundary conditions. - The conservation equations give, within the framework of

the simplifying assumptions, a complete description of the physical occurrences
within the fluid. But, to complete the statement of the problem, it still remains
to specify the boundary conditions.
| For the velocity problem, it will be supposed that the no-slip condition of
viscous flow continues to apply at the surface of the disk. Further, the convective
velocity V,,, normal to the disk surface specifies the mass injection or with-
drawal. Far from the disk surface, all fluid velocities must vanish aside from the
induced axial component.

For the energy and diffusion equations, the temperature and weight fraction
must, by continuity considerations, respectively equal T, and Wiy, at the disk
surface. At large distances from the disk, T =T and W} > Wi,.

A formal statement of these conditions is:

Vp =0 V.= O

ch=m ch"O ” oo

VZ = VZW z=0 T = Too (12a)
T=TW Wl-’wloo

W= Wy

In terms of the transformed variables, equation (12a) becomes

H=H, H' > 0
H =0 G =0
G=1 }q=0 N> (12b)
6 =1 6 >0
o =1 o> 0

where H, represents the dimensionless velocity normal to the disk surface. Positive
values of H, denote fluld injection, while negative values denote suction (i.e.,

mass withdrawal).
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Up to this point, we have been at liberty to assign whatever values we please
to Vgys Wiys Wi,» etc. Solutions of the conservation equations can be obtained for
any choices of these parameters. However, as pointed out in reference 1, there are
a number of important situations where there is an added physical constraint which
provides a relationship between V,,, and the boundary values of W;. The tempera-
ture boundary values may also be interrelated through an additionsl physical con-
straint. Illustrations of these constraints and relationships will be given when
the heat transfer and mass transfer results are discussed.

Solutions. - The velocity problem i1s governed by the differential equations
(10) and (11) subject to the boundary conditiocns (12b). By inspection of these con-
ditions, it is seen that solutions cannot be obtained until numerical values of the
dimensionless mass-transfer velocity Hw are prescribed. For a large number of
values of H  ranging from -4 to +5 as listed in table I, solutions of equations
(10) and (11) have been carried out on an IBM 653 electronic computer utilizing the
numerical techniques of reference 3. The method is g forward integration procedure
and the critical quantities which define a solution are the derivatives H"(0) and
G'(0) which are needed to start the numerical computation. A listing of these
starting values is given in table I. It will later be shown that the H"(0O) and
G'(0) are also of direct application in shear stress computations. For large posi-
tive values of H,, the limitations of a computing machine which uses eight signifi-
cant figures were keenly felt. The information listed in table I for H, = 4 and 5
1s believed to be correct to at least the number of places given, but the corre-
sponding solutions do not accurately satisfy the boundary conditions at large 1.

Turning to the temperature and diffusion equations ((4a) and (6a), respectively),
solutions were carried out for Pr = Sc = 0.7. There was, thus, no mathemtaical dis-
tinction between the equations. The needed input data for H(n) was supplied by the
previously mentioned solutions of equations (10) and (11). Since H(n) is a fune-

tion of K, so too are 6(n) and ®(n). The values of 6'(0) = @'(0) obtained from
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these solutions are listed in table I.* These are the starting values in our for-
ward integration procedure and, as will be shown later, are directly related to the
heat and mass-transfer coefficients.

For large suction velocities (large negative values of H,), certain simple
asymptotic solutions can be obtained. These will be discussed in a later section
where their motivation is clear. |

RESULTS

Velocity distributions. - Insight into the physical occurrences within the flow

field can be obtained by study of the velocity profiles. Inasmuch as space limit-
ations preclude presentation of velocity data for all the cases listed in table I,
we must content ourselves here with graphing the results for representative
situations.

We turn our attention first to the distribution of the axial velocity Vz'
Positive values indicate an outflow toward the free stream; while negative values

represent an inflow from the free stream toward the disk. The distribution of V,

plotted as a function of distance normal to the disk is presented in figure 2 for

representative values of the dimensionless injection (or suction) velocity H,.
Consider first the case of the impermeable surface, H = 0. The rotating disk acts
like a fan, drawing fluid axially inward from the surroundings toward the disk surface.
However, because the surface is solid, the inflowing fluid finds its path blocked,

and it must reroute into a radial direction where there is no obstruction. So on
figure 2, we see that the negative velocity of inflow, starting from its largest

value at large 2z, decreases steadily as we approach the disk (decreasing =z) due to
fluid escape into the radial direction. Now, consider the application of a suction

at the disk surface (i.e., H, < 0). Then, besides the fan-like pumping of the ro-
tating disk, there 1s the additional pumping due to the suction. So, the guantity of
fluid drawn in from the surroundings increases; or in terms of figure 2, the magnitude

of V,  increases. Now, the inflowing fluid has two possible paths. It may continue

Solutions of the 6 equation were not attempted for H; = 4 and 5 because the
available values of H(n) were not sufficiently accurate to serve as input data.
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its inflow through the suction holes of the disk, or, it may reroute into the radial
direction. The path chosen will, of course, be that of least resistance. As the
wall suction increases, escape through the wall becomes easier and easier. So, with
H, becoming increasingly negative, more and more of the inflow goes directly into
the porous disk. As a consequence, VZ tends to become almost constant with =.
Next, consider the case of blowing (injection) at the disk surface. In this in-
stance, the fluid drawn in by the fan action of the disk finds itself actively re-
tarded by the outflowing stream of injected fluid. The greater the blowing velocity,
the more strongly is the inflow opposed. The result is a decrease in the magnitude

of V with increasing H,. There is, in a real sense, a battle between the two

Zoo
streams; and as K, increases, the outflow penetrates to greater distances from the
disk surface. As a consequence, the cross-over point between positive and negative

V, 1s pushed farther outward.

These events are reflected by the radial velocity distribution. Representative
profiles are given in figure 3. Since the radial velocity is zero both at the disk
surface and in the ambient fluid, there must be a maximum value somewhere between.

The maximum 1s positive since the radial flow is always outward along the disk. For
the impermesble disk (H, = 0), all the axial inflow is ultimately diverted into ra-
dial flow. With increasing suction, more and more of the inflowing fluid passes di-
rectly into the porous wall; so, the radial velocities decrease as H; becomes more
negative. Further, since less fluid mekes the turn from axial to radial flow, it

can be accomplished closer to the surface, and hence (Vp)pyeyx oOccurs at smaller z.
When blowing is appliég :>tgi radial velocity must carry awey not only the incoming
axial flow, but also the injected fluid. So, the general level of the radial veloc-
ity is raised with increased blowing. But, the finer details bear further discussion.
First of all, with increasing H_, the injected stream might be expected to sustain

its axial motion to greater distances from the wall. 8o, near the wall, the radial

velocity (which is fed by diverted axial flow) might be expected to decrease as the

blowing increases. This is substantiated by comparing the curves for H =1 and
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H, = 3 at small values of z. But, as shown in the inset of figure 3, quite the
contrary 1s true at very small values of blowing: the velocities near the wall in-
creases with increasing Hw' A reasonable explanation is that for small blowing,
the injected stream is not strong enough to maintain its axial velocity and is di-
verted immediately into a radiasl flow, thereby augmenting Vr near the wall. An

alternate demonstration of this interesting occurrence near the disk surface may be

given as follows: For very small values of 2z, we can write

Vr=(§;9Wz or = EHwoﬂﬂ

So, the radial velocity immediately adjacent to the disk is proportional to H"(0).

gl

From figure 6, where [-H"(0)] is plotted against H_, we see that V_ (at swall n)
increases with increased blowing from H, = O to sbout 0.3, and, thereafter
decreases.

The tangentiasl velocity component Vcp .is directly driven through the action of
viscosity by the rotation of the disk. It thus shares a commoﬁ characteristic with
the boundary layer forward flow velocity V., which is also impelled by an external
driver - the free stream. The effect of fluid injection or withdrawal on the tan-
gential component V. 1s remarkably simllar to the well-established ef?ects on V.

¢
Figure 4 shows the distribution of V¥ as a function of distance normal to the disk

¢
for representative values of the mass-transfer velocity H,. It is easily seen that
fluid injection (H_ > 0) gives rise to the familar S-shaped (inflection point) pro-
files, the effect becoming more pronounced with increased blowing. BSince the pres-
ence of an inflection polnt is known to destabilize a laminar boundary layer, it
would be expected that transition to turbulence would occur at lower Reynolds num-
bers as the blowing becomes stronger. The velocity profile becomes progressively

flatter near the wall, suggesting the well-known "blow-off" phenomenon in which the

viscous layer is lifted off the surface. Blow-off is characterized by the condition

(dVQP/dn)w =0 or G'(0) =0

* The similarity between V

P and V, 1s best seen by turning figure 4 top to
bottom.
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In the plot of G'(0) against the blowing parameter (fig. 6), it is seen that G'(0)
is indeed approaching zero with increasing Hy,, but we were unable to find the exact
blow-off point because of the limitation of an eight-place computer. Returning to
figure 4, it may be observed that suction (H,> O) has its usual effect of thinning
the viscous layer, thereby increasing the stability of the laminar flow.

Temperature and concentration distributions. - The distribution of the dimen-

sionless temperature and concentration as a function of distance from the disk is
given in figure 5 for representative values of Hw. Since we have selected Pr = Sc,
the same curves and a similar discussion applies for both 6 and ¢; and for
brevity's sake, we will only make reference to the temperature. The action of fluid
injection (H,> 0) is to fill the space immediately adjacent to the disk with fluid
having nearly the same temperature as that of the disk. As the blowing becomes
stronger, so then does the blanket extend to greater distances from the surface. As
shown on figure 5, these effects are menifested by the progressive flattening of the
temperature profile adjacent to the disk. Thus, the injected fluid forms an effec-
tive insulating layer, decreasing the heat transfer from the disk (fig. 7). Suctionm,
on the other hand, serves the function of bringing large quantities of ambient fluid
into the immediate neighborhood of the disk surface. As a consequence of the in-
creaged heat consuming gbility of this augment flow, the temperature drops quickly
as we proceed away from the disk. The presence of fluid at nesr-ambient temperature
close to the surface increases the heat transfer (fig. 7).

Shear stress and shaft torque. - The action of viscoslty in the fluid adjacent

to the disk tends to set-up a tangential shear stress which opposes the rotation of
the disk. As a consequence, it is necessary to provide torque at the shaft to main-

taln a steady rotation. To find the tangential stress Tp, We apply the Newtonian

shear formula .
Tp = p(avw/az)w (13a)

In terms of the variables of the analysis, this expression becomes

cofer ()7 = 6 (0) (13)
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The shaft torque M required to overcome the shear on one side of a rotating disk
is
e
M= - f rip2mr dr (14a)
0

where r, 1s the disk radius. Utilizing equation (13b), there is obtained

2/ neo (vw®) /% = ' (o) (140)

So, both the tangential shear To

G'(0) of the tangential velocity profile which has been listed in table I. The

and the torque M are proportional to the slope

torque and tangentisl shear results are plotted on figure 6 as a function of the
mass transfer velocity H,. The effect of blowing is to decrease the

tangential shear and the torque requirements. These quantities take on zero values
at the blow-off point, but computing limitations prevented the determination of this
condition. The effects of suction are opposite to those of blowing. These findings
reflect the changes in tangential velocity profile as previously discussed and are
qualitatively similar to the effects of mass transfer on the skin friction in a
boundary layer flow.

There 1s also a surface shear stress 1T, in the radial direction which, prac-
tically speaking, is of lesser lmportance than is the tangential stress. Again, us-
ing the Newton shear relations and then introducing the variebles of the analysis,
there is obtained

o A S GEEE 120 ()
This dimensionless shear stress has been plotted on figure 6. A maximum value,
which has alréady been discussed in relation to the velocity profiles, is achieved
at about Hy = 0.3.

Heat transfer and surface temperature. - The heat transfer from the disk sur-

face to the fluid is computed by application of Fourier's law
q = -k (0T/3z),,

Introducing the transformed variables, the expression for g becomes

0= (r, - 1) (&) 00 (16)



E-438

- 14 -
It is customary to rephrase the heat transfer results in terms of a heat transfer

coefficient and a Nusselt number, which are defined as follows

q Nu = h(v{w)l/z (17)

hs e u
T, - T’ K

where (v/w)l/z plays the role of a characteristic length. With this, equation (16)

becomes
Nu = -6'(0) ' (18)

The Nusselt number results are presented in figure 7 as a function of the dimension-
less mass-transfer velocity Hy. As has already been noted, the effect of fluid in-
Jection (H, > 0) is to significantly decrease the heat transfer (and hence, the
Nusselt number) by blanketing the surface with fluid whose temperature is close to
Ty+ Suction has an opposite effect on the heat transfer, since fluid at near-
ambient temperature is brought to the neighborhood of the disk surface,

With these heat-transfer results at our disposal, we may proceed to maske ap-
plication to specific situations. Consider the situation of mass transfer cooling

(from a supply tank)
by a gas. The coolant gas enters the porous disk / at a temperature T_, and is

e
heated in its course of flow through the wall. The flow passages are so arranged
thatvthe coolant emerges at a temperature T, equal to that of the disk surface.

It is of interest to determine how T, 1is related to the other parameters of the
problem. In the sbsence of heat losses by conduction and radiation, an energy bal-
ance on a control volume spanning the thickness of the porous wall yields

mep (T, - Tg) = h(T, - T.) (19a)
The left hand side is the energ& absorbed by the coolant gas, while the right side
is the heat transferred to the disk surface from the ambient fluid. Borrowing the
result that my = pVZw from equation (28) and introducing the definitions of the

Nusselt and Prandtl numbers, equation (192) may be rephrased as

Ty - Te _ Nu
T, - T, PrH;

(19v)

Suppose that the entering coolant tempersture Te and the free-stream condition

T, are known. Further, when the blowing rate K, is presented, the value of Nu
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may be read from figure 7. Hence, equation (19b) permits the determination of the

of the disk surface as follows
Nu
T (-———>+ Tg
Ty = I (19¢)
1+ o
Priy

It is clear from equation (19c) that increased blowlng causes the wall temperature

temperature T

T, to approach more and more closely to Te' As an alternative, equation (19b) can

be solved to provide either the blowing velocity or the coolant temperature needed
to maintain a given T,.

Equations (19b) or (19c¢c) illustrate the statement, made in discussing the
boundary conditions, that there are important applications in which all of the
boundary temperatures cannot be prescribed independently.

Additional examples showing the application of the Nusselt number results are
given in reference 1.

Mass transfer. - The previous derivation of the heat-transfer coefficient and

Nusselt number can be duplicated for diffusion. For component 1, the mass transfer

at the disk surface by diffusion alone is given by Fick's law (8) as

oW oW
. i ) I Y (20)
M4a = Piw |7 W 3z = PU\3z
W w
Now, defining a diffusional transfer coefficient and diffusional Nusselt number as

h. = s Nuy = ——m8m8 ——— (Zl)
SO AN d oD

and introducing the variables of the analysis, there is obtained
Nug = (-¢'(0)] (22)
This is identical to the result for the heat transfer Nusselt number which has al-
ready been plotted on figure 7.
Now, the total mass flow of component 1 at the disk surface is due to both dif-

fusion (subscript d) and convection (subscript c). 8o, we write
mp = Mg + My, (23a)
Convection contributes an amount py,V,. , while the diffusional contribution can be

computed from equations (21) and (22). Introducing this information into (23a) and
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rearranging, we find

my Nug
SN i/Z T i tas (Wyyy - W1) (23b)

Proceeding in & slmilar way for component 2, end using the fact that Wl + Wz = 1,

there is obtailned
mny

Nud
= (1-W.) H - =—= (W -W_) (24)
p((.DV)l72 lw H’W’ Sc 1w 1o
The conbined mass transfer of both components at the surface is given by
m=m +u, (25a)

Adding equations (23b) and (24), we get

o (25b)

=H;, or m= pV,,
p(ov) 172

So, as expected, it is the convective velocity V,, which transports mass for the
combined flow.

Now, we turn to applications. In the discussion of the boundary conditions, it
was noted that in many situations there is a physical constraint which relates the
velocity Vg, and the mass fractions Wlw and Wl&' The constraint which is most
frequently encountered is the condition of no net mass flow of component 2 (e.g.,
the main stream component) into or out of the disk surface. When the mass addition
or removal of component 1 is due to evgporation, sublimation, or freezing, it is
clear that component 2 will be undgble to enter or ieave the surface. In the case of
a coolant gas passing through a porous wall, the condition of no net mass flow of
component Z into the wall is still correct, provided that the coolant gas in the
supply tank is pure component 23* Proceeding to the mathematical formulation of
this constraint, we observe that

mp = 0 = mpg + mpe
So, to meke mp = 0, the diffusive flow of component 2 into the wall is balanced by

a convective outflow. Utilizing equation (24) with m, = 0, we get

HW(SC) _ le - Wloo
Nud 1- Wlw

(26)

*pdditional discussion will be found in reference 1.
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or, in terms of physical variables

oW
D A
Vow = = T2 Wlw-<5z )W (27)

For a given H , Nuy 1is known. 8o, equation (26) expresses the fact that for no

net mass flow of component 2 into the wall, only two of the quantities Wy, W, ,

and H_ may be selected independently. When mo = O, it follows from equations

(25a) and (25b) that

m o= m o= oV, (28)
An important special case of mass transfer cooling occurs when the mass frac-
tion of the coolant gas is zero in the free stream, i.e., Wi, = O. Then, equation

(26) becomes

(29)

Wy

w- T+ Nuinw(Sc)
So, Wlw is fixed when K, is specified and vice-versa. Utilizing the Nusselt num-
ber results of figure 7, we have plotted the variatlon of W, with H, on figure
8. It is seen that the coolant mass fraction (Wlw) at the wall increases rapidly
with blowing rate and is greater than 0.95 for &, > 1.3.

Thickness of viscous and thermal layersj amblent inflow. - Our solutions show

that the significant velocity and temperature variations in the fluid are confined
to the region adjacent ﬁo the disk. To define the thickness of these layers, we use
certain standard measures.

The first of thése is the displacement thickness. Inasmuch as we are dealing
with a three-dimensional problem, the initial thought might be to evaluate separate
displacement thicknesses for both the radial and tangential directions. However,
since the radial flow is zero both at the disk surface and at infinity, a radial
displacement thickness would have very little meaning. Then, for the tangential

direction, we define a displacement thickness as

0 v (-]
B3is = ‘é. ..r% dz or E>dis/(v/a))l/2 = [ G dn (30)

In physical terms, B gives the thickness of a fictitious layer of fluid which 1is

dis

rotating at & uniform tangential velocity rw and is carrying a tangential mass
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Tlow equél to that carried by the actual tangential velocity distribution. Values
of the displacement thickness are given in table I. It is seen that suction appre-
ciebly reduces the thickness of the viscous layer, while blowing increases the
thickness.
A momentum thickness for flow about a rotating disk has been defined by Stuart
(2) as

8/ (v/w) /2 = fm G(1 - G)ay (31)

0

While this expression has a form similar to that for the boundary-layer momentum
thickness, we are unable to give it a clear physical meaning. Values of Gm are
listed in table I and show qualitative trends similar to these for adis'

As a measure of the extent of the thermal layer, we may introduce a thermal

thickness based on the temperature excess T - T above the amblent fluid. Then,

“p-m, B
B = / T, 4 or 6,(:/(1//&)1/2 = / 8 dn (32)
6] 0

Physically speeking, &; 1is the thickness of a fictitious fluid layer at temperature

T . whose integrated temperature excess over T, is identical with that of the actual

W

temperature distribution. Numerical values of the thermsl thickness are listed in
table I as & function of the mass transfer veloeity H_,. With blowing, the thermal
thickness increases; while with suction, it decreases.

The extent of the thermasl layer is sometimes characterized by a convection
thickness (ref. 9, pp. 118-119). In reference 9, the definition of such a thickness
was motivated by the results of an over-all energy balance. Setting up such a bal-

ance for the present problem, we find

Nu _ A
3 = By - H'Q dn (33)
0
The integral represents the convection of energy in the radial direction. So, in

analogy to previous work, we define
00
2= =M
BC/(v/w)l/ = . ~[ B'o dn = 5o + Hy (34)
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The convective thickness can be evaluated using figure 7 or table I, since
Nu = -6'(0) . It may easily be verified that &, increases with blowing and de-
creases with suction.

It may also be of interest to know the quantity of ambient fluid which is drawn
inward toward the rotating disk. The inflow velocity of the ambient fluid is V.,
and its dimensionless counterpart is H,. A listing of H, values is given in
table I. As expected on the basis of previous discussion, H_  increases with suc-
tion and decreases with blowing. The information given in table I may also be to
compute the radial flow. Imagine a cylindrical control surface of radius r ex-
tending from the disk surface to the ambient fluid. Then, the flow passing through
this cylindrical surface is

Redial flow = prr’ [Vow = Vil = pﬂrzﬁbv)l/z (g, - 2 ]
For large suction, table I shows that H - H,  is very small, indicating a small
radial flow. The effect of blowing is to increase the radial flow.
ASYMPTOTIC SOLUTIONS

For large suction (i.e., large negative values of Hw), it 1s possible to find
simple asymptotic solutions of the governing equations. The key to the simplifica-
tion is the fact, graphically displayed on figure 2, that the axial velocity v,
is essentially constant throughout the flow when the suction is strong. In terms of
the dimensionless varisbles of the analysis, this means that H 1s essentially in-
dependent of n for a fixed value of H,. With this, equations (4a) and (6a)
become

6" = (Pr)H,6' and o" = (Sc)H o' (34a)
A solutlon satisfying the boundary conditions is

o = o (FTIEM 2 = o(SC)EM (34D)
from which it follows that

6'(0) = (Pr)E,, ¢'(0) = (Sc)H, (34c)

For Pr = Sc = 0.7 and H; = -4.0, equation (34c) predicts that 6'(0) = ¢'(0) = -2.8.

This is in excellent agreement with the value -2.802 which appears in table I.
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Proceeding in the same manner, it is easy to show that solution of equation (11) for
G is

G = B, G'(0) = K, (35)
The G'(0) prediction of equation (35) for H, = -4 1s very close to the value 4.005
glven in table I.

Continuing, we may use equation (10) to predict values of H"(0). Noting that

(H')2/2 is smaller than the other terms, we integrate between limits of 7 = O
and 17 = o and get

5"(0) = 2 (36)

E,

For E_ = -4, equation (36) gives H"(0) = -0.25, which is in excellent agreement

with the value of -0.2495 of table I.
With these results, it is easy to derive that the thickness parameters take the

following form for lerge negative values of H,

Sats  _ _ 1 qw 1 & 1 s e o (1)
Gl 2" TR GmET T G g e
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TABLE I. - SOME IMPORTANT PROPERTIES OF THE SOLUTIONS
[SFN S d vV
H"(0) | -a'(0) [-6'(0) = -0'(0) dis o K L
~ /)Y | (W) E | (/) B | (ve)Y/2
-4 0.2495 | 4.005 2.802 0.2496 0.1248 0.3566 4.008
-3 .3312 | 3.012 2.106 .3315 .1657 L4741 3.018
-2.5 .3947 | 2.521 1.759 . 3957 1977 .5663 2.531
-2 .4848 | 2.039 1.418 . 4875 .2434 . 6995 2.058
-1.5 .6136 | 1.580 1.087 .8226 .3100 .8999 1.620
-1.2 L7104 | 1.328 . 8998 . 71300 . 3622 1.066 1.391
-.8 .8463 | 1.036 .6730 . 9000 L4423 1.348 1.150
-.4 .9576 .8016 .. 4798 1.085 .5240 1.698 .9872
-2 .99586 . 7033 . 3969 1.178 .5625 1.895 .9298
-.08 1.012 . 8497 .3515 1.234 .5846 2.020 .9014
0 1.020 . 6159 . 3231 1.271 .5989 2.106 . 8845
.06 1.025 .5916 .3028 1.299 . 6094 2.170 .8728
.1 1.028 .5758 . 2897 1.318 .6183 2.214 . 8654
.3 1.034 .5022 . 2295 1.412 .64986 2.448 .8331L
) 1.029 . 4364 .1782 1.506 . 6811 2.8685 . 8070
.6 1.023 . 4063 .1557 1.554 .6962 2.814 . 7960
.7 1.015 .3779 1353 1.602 L7111 2.941 . 7859
.8 1.004 .3511 .1167 1.650 .7255 3.076 L7766
1 .9790 .3022 .08539 1.749 .7536 3.345 . 71605
1.6 .8758 .1885 .02806 2.081L .8338 4.187 . 7251
2 L7979 .1360 .01140 2.286 . 8853 4.765 . 7065
3 .8183 .06029 . 0006204 2.902 1.017 6.214 . 6707
4 . 486 .0289
5 .395 .0155
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Fig. 1 - Physical model and coordinates.
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